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Abstract

The classical and elegant independent sorption domain theory introduced by Everett marked a milestone in the field of
adsorption, since it allowed via their famous complexion diagrams a straightforward visualization of the state of individual
pores, i.e. filled or emptied of condensate according to their sizes, of an adsorbent in contact with a vapor. The principal
results of the independent domain theory are comprised in a series of theorems. The applicability of these theorems is now
examined from the point of view of the dual site-bond model, a non-independent pore domain approach that has been proved
to be very useful to simulate porous networks and capillary phenomena occurring wherein. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Everett’s independent domain theory of sorption
hysteresis(ISDT) first saw the light between 1952
and 1955 in a series of publications in the trans-
actions of the Faraday society [1–4]. The main as-
sumption of the theory consisted in visualizing the
porous network as an assemblage of independent
pores, whose behavior during the capillary process
not depended on each other. Every pore domain
was characterized by two quantities; each indicat-
ing, respectively, the critical conditions at which the
vapor → liquid and the liquid→ vapor irreversible
transitions there occurred. Hysteresis was then rec-
ognized at the level of one pore and brought about
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to the level of the whole network, through the sum-
mation of individual pore hysteretic contributions.
Among the results provided by theISDT two are
very important: (1) the state of each pore entity can
be visualized through adomain complexion diagram,
a graph in which every pore domain is identified as
either full or empty of capillary condensate according
to its size; (2) the shapes and qualitative behavior
of scanning curves or subsidiary cycles within the
main hysteresis loop can be inferred from a series of
theorems.

In spite of the success of theISDT in explaining
several experimental sorption facts, Everett himself
[5] pointed out that a more general theory of sorption
hysteresis should be necessary in order to improve
the agreement between experimental and theoretical
expectations found so far through theISDT. Thus, it
would be essential to consider the appropriate cor-
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relations that arise among the voids of an intercon-
nected porous network in order to adequately interpret
or simulate a given sorption process. An approach
of such a kind would constitute a non-independent
domain theory. Thedual site-bond model(DSBM)
of complex media allows the construction of topo-
logically heterogeneous porous networks, based on
the recognition of two basic void elements that
constitute the substrate: thesites (cavities) and the
bonds (throats, capillaries). The heterogeneity of a
porous network can be ascribed to the following
properties:

1. pores can adopt different sizes according to a
preestablished twofold distribution of sites and
bonds [6,7],

2. the connectivity, that is the number of neighbors
to which a pore cavity is interconnected, can vary
from one site to another [8],

3. there may arise geometrical restrictions among
bonds [9], in the sense that there should exist no
interpenetration between any pair of pore channels
before reaching the cavity to which both bonds are
being connected.

This work gives emphasis to the ascertainment or
not of the theorems advanced by theISDT, with respect
to sorption processes occurring in non-independent
pore domain systems. First, some basic notions con-
cerning the main characteristics of a typical sorption
isotherm and some of the different processes de-
veloped within its hysteresis loop will be outlined.
Second, a general overview of theISDT and its in-
cumbent theorems will be presented. Third, funda-
mentals of theDSBM and analytical expressions of
some sorption processes occurring in such a substrate
will be provided in order to realize the type of par-
ticularities involved during pore filling with a given
fluid. Finally, the results supplied by theDSBMwith
respect to the validity or contravention of the theo-
rems of theISDTapproach about sorption phenomena
taking place in non-independent pore domains will be
discussed. This discussion will be made for the case
of selected porous networks with a minimal num-
ber of constraints. Monte Carlo sorption simulations
will be employed to determine the sorption curves
and sometimes, when possible, analytical expres-
sions will be used to describe a particular sorption
process.

2. Theory

2.1. Basic aspects [5]

An adsorption isotherm of a vapor on an adsorbent
solid surface (in which the amount of gas adsorbed is
plotted against the relative vapor pressurex ≡ p/p0

of the adsorptive,p being the vapor pressure andp0

the saturation vapor pressure at temperatureT ) ex-
hibits several characteristics (see Fig. 1). Usually, the
isotherm displays ahysteresis loop(HL) delimited by
theboundary ascending(BA) curveand theboundary
descending(BD) curve. The lowest value ofx that cor-
responds to the onset of the hysteresis phenomenon
is known as theinception point, whilst the highestx
point at which the loop closes is theclosure point, at
these two points both theBA and theBD curves coin-
cide. An infinite number of different trajectories can be
drawn within the hysteresis loop; all these correspond
to scanning processes. Aprimary scanning ascending
process (PA) consists in an adsorption path starting
at some point on theBD curve (thepoint of reversal
or inversion) that finishes at some intermediate point
within the HL, the scanning process concludes when
theBAcurve is reached. Aprimary scanning descend-
ing curve (PD) consists in a desorption process started
at some point of theBA curve (point of reversal) and
continued down to some point in theHL, here again
the scanning process ends if theBD curve is reached.

The critical conditions for condensation or evapo-
ration of a substance to take place in individual pores
can be predicted by means of the Kelvin equation:

RTln
p

p0
= σ lgvlC lg (1)

where σ lg is the surface tension of the liquid–gas
interface,vl the molar volume of the adsorptive,Clg

the curvature of the liquid–gas interface,R the gas
constant andT the absolute temperature.Clg is related
to Rc, the mean critical radius of curvature of the
liquid–gas interface through the equationC lg = 2/Rc.
The different menisci geometries that arise when
condensation or evaporation processes take place, are
the causes of the hysteresis observed at the level of
a single pore [10]. Neglecting the influence of the
adsorbed layer, a spherical pore of radiusRsp will
become filled with condensate when the radius of
curvature of the interface appearing inside the void
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Fig. 1. Sorption isotherm showing the main hysteresis loop (HL), the boundary ascending (BA) curve, the boundary descending (BD) curve,
a primary ascending (PA) curve, a primary descending (PD) curve and a subsidiary loop.

is equal to the pore radius (Rc = Rsp). In turn a
cylindrical capillary will become filled with liquid if
the interface has a radius of curvature twice as that of
the cylinder (Rc = 2Rcyl). Evaporation of condensate
from a cylindrical pore occurs whenRc = Rcyl.

2.2. Fundamentals of the domain theory of sorption
hysteresis [1–5]

Sorption hysteresis in porous media can be analyzed
on the basis of Everett’sISDT. In this treatment, in-
dividual sorption pore hysteresis properties (related to
the conditions required for an isolated pore entity to
be fully invaded by a certain fluid) manifest together
during the occurrence of the capillary process and
help explaining the sorption hysteresis phenomenon
observed at the level of the whole substrate.

In this work, the porous structure is envisaged as
a collection of independent or isolatedpore domains.
Citing Everett [5], a pore domain is a region of pore
space accessible from neighboring regions through
pore constrictions. In the simple case of the pore space

formed by equal spheres in hexagonal close packing,
the pore domains may be identified with the tetrahe-
dral and octahedral cavities (sites, antræ), which are
joined through windows (constrictions, necks) with
the shapes of triangular foramina. An isolated pore
domain have well-defined condensation–evaporation
characteristics involving one or more spontaneous
irreversible steps.

Each pore domain can be characterized by two
relative vapor pressure values,x12 andx21, that indi-
cate the onsets at which irreversible condensation or
evaporation phenomena take place, respectively. The
quantityx12 represents the relative pressure required
for a pore domain to be filled with capillary conden-
sate, by displacing the vapor phase that was originally
occupying the cavity. The quantityx21 represents, in
turn, the conditions required for the liquid–gas in-
terface to sweep throughout the cavity removing the
liquid-like phase while substituting it with vapor.

For adsorption–desorption processes occurring
within an isolated pore domain, it is always found that
x12 ≥ x21, therefore, the reason ofpore hysteresis.
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This inequality can be visualized graphically via a
diagram in which pore domains are located inside the
limits of an equilateral triangle of basex12 and height
x21. Reversible adsorption–desorption properties may
sometimes arise (e.g. a cylindrical pore open at one
end and closed at the other, can be liquid-filled and
liquid-emptied reversibly) and are located around the
hypotenuse of the triangle. Associated to each ele-
ment of area in this triangular diagram, there exists
a quantityv(x12, x21) such thatv(x12, x21) dx12 dx21
represents the volume of the pore domains contained
between (x12, x12+dx12) and (x21, x21+dx21). Thus,
the volume density distribution functionv(x12, x21)

characterizes the properties of the pore domain.

2.3. The ISDT

The foundation of this theory consists in imagin-
ing that the porous medium is made of a collec-
tion of individual non-interacting pore domains (e.g.
an arrangement of parallel non-intersecting capil-
lary tubes). Therefore, individual domain volumes
v(x12, x21) dx12 dx21 can be added together to build
an overall distribution function embodying the dis-
tribution condensation–evaporation properties of the
whole adsorption system.

If the values ofv(x12, x21) are plotted vertically to
the triangular base of the planex12, x21, then a surface
appears over this plane. The volume comprised be-
tween this surface and the triangular base fromx12 =
0–1 represents the total porous space,V p:

V p =
∫ 1

0

∫ x12

0
v(x12, x21) dx21 dx12 (2)

When a certain state of the adsorption process in the
porous substrate is reached, the volumeV of all pore
domains filled with condensate (having started with
an empty pore system at zero pressure) at a relative
vapor pressurex12 is given by

V =
∫ x

0

∫ x12

0
v(x12, x21) dx21 dx12 (3)

Graphically, aBA process of this kind can be rep-
resented by the movement of a vertical line from
left (x = 0) to right (x12) across the triangular base
(Fig. 2c). A diagram representing this and other
types of sorption processes has been called adomain
complexion diagram. In this type of diagram, the

extents of liquid- and vapor-filled elements can be
appreciated while distinguished from each other. A
complexion diagram is a plot depicting the pore size
distribution function below which there are lines that
delimit blank areas (vapor) from black-areas (conden-
sate) (Fig. 2a and c,F(R) representing the pore size
distribution function).

A BD process can be visualized through the move-
ment of a horizontal line from top to bottom of a com-
plexion diagram. Having all pores initially filled with
condensate (x = 1) and if then the relative pressure
is decreased to some valuex, this desorption process
will cause that some pore domains be now emptied
of condensate. The volume of liquidV remaining in-
side the pore domains after the desorption process has
taken place fromx = 1 to x is (Fig. 2a′ and c′):

V = V p −
∫ 1

x

∫ x12

x

v(x12, x21) dx21 dx12 (4)

A PD curve consists of a desorption process origi-
nated at an upper relative pressurexui (i.e. the point
of inversion) on theBA curve down to a lower relative
pressurexl in the hysteresis cycle. The correspond-
ing domain complexion diagram of a particular state
reached through aPD curve can be obtained by the
movement of a vertical line fromx = 0 toxui followed
by the displacement of a horizontal line fromxui to x.

A PA curve consists of an adsorption process initi-
ated at the lower point of inversionxli located on the
BD curve, followed by an adsorption process from this
state to an upper pointxu lying somewhere within the
hysteresis loop. Construction of the domain complex-
ion diagram involves the movement of a vertical line
from the point of inversionxli to the upper limitxu of
thePA curve.

2.3.1. Theorems stated by the ISDT
These are the theorems advanced by theISDT:

Theorem 1. If the PD curve fromxu meets the BD at
xl , then the PA curve fromxl meets the BA atxu.

Theorem 2. If all the PD curves converge on the
lower inception point of the HL, all the PA curves will
converge on the upper closure point.

Theorem 3a. The slope of any scanning curve (SC)
is zero at the point of reversal.
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Fig. 2. Domain complexion diagrams for aBA curve (at left) and aBD curve (at right), at certain stages of the corresponding sorption
process. Black and gray areas represent pores filled with condensate, blank areas correspond to vapor-filled pores. (a, a′) Domain complexion
diagrams; (b, b′) sorption curves; (c, c′) triangular diagrams. Areas in gray correspond to blocked pores during the descending process.

Theorem 3b. The slope of any SC at a given value of
x is less than the slope at the same value of x of all
curves of lower order into which it runs, when, for an
ascending curve, x is increased, or for a descending
curve x is decreased.

Theorem 4. If the path of the system is reversed at
A (x = xA) and x is changed toxB and back toxA,
then the system will return to A. Any oscillation of x
between the given limitsxA andxB will lead to a loop
of constant shape and area independent of the position
of A in the loop.

Theorem 5. If, when the system returns to A as envis-
aged in Theorem 4, x continues to increase, the system
will move along the same curve as that which would
have been followed if no loop had been traversed
from A.

Theorem 6. Any point P within the HL can be
reached in an infinite number of ways, some from
lower values of x, some from higher. The system
will have definite static macroscopic properties at
this point, but its state will not be completely de-
fined since its behavior when it moves away from
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P depends on the route by which this point was
approached.

Theorem 7. If a system is taken through a series of
oscillations of x of decreasing amplitude, after the
nth reversal the system moves towards the point at
which the(n − 1)th reversal occurred, if the system is
carried through this point it moves towards the(n −
3)th reversal point and so on.

2.4. DSBM of disordered media

As stated by Everett, the predictions provided by
the ISDT are, in general, fulfilled qualitatively when
considering the areas of thex12, x21 plane over which
integrations are performed to visualize the amount of
pores filled with condensate during a sorption process.
However, those predictions that involve actual values
of the volume integrals are of less general validity
([5], p. 1100). An additional inconvenient is that the
independent domain theory has failed to account for all
the experimental observations and a non-independent
domain theory is thus required.

The DSBM of disordered media conceived by
Mayagoitia is especially convenient to perform a
proper modeling of porous structures [6–9]. Before
starting the study of any capillary process in a porous
medium, a proper idea of the topology of the substrate
should be borne in mind. An adequate model will help
to identify possible pore interactions occurring during
a capillary process and that theISDTcannot envisage.

The principal characteristics of theDSBM are as
follows. The porous solid is modeled as an intercon-
nected network of two kinds of alternated voids:sites
(cavities) andbonds(necks, windows). Every site is
connected toC neighboring sites by bonds; each bond
is the link between two sites (C denotes theconnec-
tivity of the network).C can vary from site to site, for
simplicity it will be assumed here as constant and so in
this work the network will resemble a regular lattice.

The theory establishes that instead of considering
only the size distribution of voids without paying at-
tention to the kind of element (site or bond) to which
the pores belong (as it has been traditionally done),
it would be more appropriate to consider a two-fold
distribution of sizes. In this way,FS(R) andFB(R) are
defined as the normalized size distribution functions
(on a number of elements basis) of sites and bonds,

so that the probabilities to find a site,S(R), or a bond,
B(R), having a sizeR or smaller are, respectively:

S(R) =
∫ R

0
FS(R) dR;

B(R) =
∫ R

0
FB(R) dR (5)

An important parameter of the two-fold distribution
of sites and bonds is the degree of overlappingΩ

betweenFS(R) andFB(R), i.e. the common area shared
between the two distributions.Ω is a measure of the
size correlation existing among pore entities.

A construction principle(CP) emerges from the
very definitions of site and bond: the size of any
bond should be always smaller than or at most equal
to the size of the site to which it is linked. Two
self-consistency laws guarantee the fulfillment of the
CP. The first law establishes that bonds must be suf-
ficiently small and supplied in such a number as to be
accommodated together with all the sites belonging
to a given size distribution.

A second law is still required since whenΩ is con-
siderable, there may appear topological size correla-
tions between neighboring pore elements. Therefore,
the joint event of finding a site of sizeRS linked to a
bond of sizeRB is not independent and the probability
density for this to occur is

ρ(RS ∩ RB) = FS(RS)FB(RB)φ(RS, RB) (6)

The second law can be expressed as

φ(RS, RB) = 0 forRS < RB (7)

If the randomness in the topological assignation of
sizes is raised up to a maximum, while complying with
theCP, the mostverisimilar (likely) form of φ for the
correct caseRS ≥ RB is obtained:

φ(RS, RB) =
exp

(
−∫ S(RS)

S(RB)
dS/(B − S)

)
B(RS) − S(RS)

=
exp

(
−∫ B(RS)

B(RB)
dB/(B − S)

)
B(RB) − S(RB)

(8)

These topological size correlationships promote a
size segregation effect, consisting in that sites and
bonds of the bigger sizes join together to form re-
gions of large elements, while elements of the smaller
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sizes reunite to constitute alternated regions of small
entities. This effect becomes more important asΩ

increases. The consequences of this effect on the de-
velopment of capillary processes are of the utmost
importance.

The CP can be extended or reformulated to al-
low for more constraints when constructing the
porous networks. Variable connectivity or geometrical
restrictions may be allowed for.

2.4.1. Analytical expressions for sorption domain
complexions

Analytical expressions describing the states of
porous entities (filled with liquid or vapor) during
diverse sorption processes have been previously esta-
blished [11,12]. In these expressionsθS(R) andθB(R)
represent, respectively, the fraction of sites or bonds
of size R that are filled with capillary condensate at
a particularRc. The overall degrees of filling of sites
and bonds are then:

θS =
∫ ∞

0
θS(R)FS(R) dR;

θB =
∫ ∞

0
θB(R)FB(R) dR (9)

In order to establish the particular sorption expres-
sions, geometries have to be assigned to sites and
bonds. In this work sites will be considered as hol-
low spheres and bonds as hollow cylinders open
at both ends. Therefore, sites have several poles at
which bonds are connected to them. Furthermore, the
connectivity of the networkC will be assumed con-
stant. All the following equations are mean field or
Bragg–Williams approximations. Analytical expres-
sions for scanning curves of an order higher than one
are less accurate because of an extended application
of the mean field approximation and will not be dealt
with in this work.

2.4.1.1. BA curve. Bonds, conceived as hollow
cylinders, can fill in two ways. Independently if the
bond radius is smaller than or equal toRc/2, through
a mechanism described by Everett and Haynes [10],
or assistedly when one of its two delimiting sites
becomes filled with condensate [13]. Domain com-
plexions for bonds,θB(R), along theBA curve are

then:

θB(R) =




1
[1 − (1 − J )2]
0

for

R ≤ Rc

2
Rc

2
< R ≤ Rl

R > Rc

(10)

whereJ is the probability that a bond being invaded
by condensate in an assisted manner from a delimiting
site, and for the case whenΩ = 0, J is given by

J = IC−1S(Rc) (11)

where,I represents the probability that a neighboring
bond (not the incumbent one but any of the remaining
C − 1 bonds linked to this delimiting site), be already
filled by condensate in an independent or assisted way:

I = B

(
Rc

2

)
+

[
1 − B

(
Rc

2

)]
J (12)

So that all bonds withR ≤ Rc/2 will be completely
filled with condensate and those withR > Rc/2 may
be filled or not depending on the topology of the net-
work and state of the system.

Correspondingly, domain complexion expressions
for sites along theBA curve are

θS(R) =
{

IC + CIC−1(1 − I )

0
for

R ≤ Rc
R > Rc

(13)

These expressions arise since a site can be filled with
condensate whenC or at leastC − 1 of its delimiting
bonds have been invaded by condensate [13]. In this
latter case the liquid–gas interface will proceed into
the remaining empty bond causing its assisted filling
with condensate.

2.4.1.2. BD curve. Domain complexions for sites
during this boundary process are given by the expres-
sions:

θS(R) =
{

(1 − K)C

1
for

R ≥ Rc
R < Rc

(14)

K is the percolation probability that vapor invades the
site, wherein two conditions are comprised: (a) the site
should be large enough (R ≥ Rc), and (b) there should
exist a continuous trajectory to the bulk vapor phase
from the site in question.K is then given forΩ = 0 by

K = [1 − B(Rc)][1 − (1 − K)C−1] (15)



148 F. Rojas et al. / Journal of Molecular Catalysis A: Chemical 167 (2001) 141–155

For bonds,θB(R) is given by

θB(R) =
{

(1 − L)2

1
for

R ≥ Rc
R < Rc

(16)

L being the probability of vapor invading the bond, for
Ω = 0 this quantity becomes

L = 1 − {B(Rc) + [1 − B(Rc)](1 − L)}C−1 (17)

This expression forL arises from the fact that a bond
will be invaded by vapor if (1) it is larger thanRc,
and (2) there is a continuous path to the vapor phase
through any one of the remainingC − 1 bonds linked
to the site delimiting the bond in question.

2.4.1.3. PA curves. Conditions at the reversal point
on theBD curve are marked with an asterisk;θ∗

S(R)

then being the degree of filling of a site of sizeR at
this point. Domain expressions for sites are given by

θS(R)

=
{

θ∗
S(R) + [(1−θ∗

S(R)][IC
PA+CIC−1

PA (1 − IPA)]

θ∗
S(R)

for
R ≤ Rc
R > Rc

(18)

Whilst for bonds we have

θB(R) =
{

1

θ∗
B(R) + [(1 − θ∗

B(R)][1 − (1 − JPA)2]

for
Ru ≥ R

Ru < R ≤ Rc
(19)

Ru being eitherR∗
c or Rc/2 whichever is larger, and in

the case whenΩ = 0, JPA andIPA are given by

JPA = IC−1
PA S(Rc) (20)

IPA = B(Ru) + (1 − B(Ru)[θ
∗
B(R)

+(1 − θ∗
B(R)JPA] (21)

2.4.1.4. PD curves. The treatment is similar to the
BD curve. For sites the degree of filling with conden-
sate is

θS(R) =
{

0

θ∗
S(R)(1 − KPD)C

for
R > R∗

c

R∗
c ≥ R

(22)

θ∗
S(R) being the degree of filling of a siteR with con-

densate at the point of reversal andKPD given by

KPD = θ∗
B(RB)

θ∗
B

[1−B(Rc)[1 − (1 − KPD)C−1] (23)

And for bonds

θB(R) =




θ∗
B(R)(1 − LPD)2

θ∗
B(R)

1

for

R∗
c ≥ R ≥ Rc

Rc > R > Rl

R ≤ Rl

(24)

whereRl may beR∗
c/2 or Rc, depending on which is

the smallest.LPD is expressed as

LPD = 1−S(R∗
c)

×




B(Rl) + [B(Rc) − B(Rl)]θ∗
B(Rl)

+[1 − B(Rc)]θ∗
B(R)(1 − LPD)

θ∗
B




C−1

(25)

3. Results and discussion

3.1. Construction of porous networks by a Monte
Carlo method

The strategy to be used in this work in order to as-
certain the validity or contravention of theISDT theo-
rems in the case of sorption phenomena occurring in
non-independent porous networks, is as follows. Het-
erogeneous three-dimensional porous networks (het-
erogeneous in the sense of having pores of different
sizes subjected to some geometrical restrictions) con-
sisting of a given number of void elements and con-
structed according to the premises of theDSBM, will
be used to model non-independent domain substrata.
The required twofold distribution for constructing the
porous networks will be chosen as a double Gaussian,
with no overlap between the site and bonds functions
(Ω = 0). The networks will be regular cubic 3-D lat-
tices (i.e. with a constant connectivity of 6) with a
constant node to node distance equal to 1.1 times the
diameter of the largest site; sites will be allocated at
the nodes of the network. Bonds will be connected in
between the sites in such a way as to concurrently ful-
fill two conditions: (1) to be smaller than the site and
(2) to avoid any interference with another neighboring
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bond. This last condition is a geometrical restriction
meaning that two orthogonal bondsRB1 andRB2 could
be connected to a site of sizeRS if only the following
condition is fulfilled:

RS ≥
√

R2
B1 + R2

B2 (26)

3.2. Simulation of sorption phenomena within
selected substrata

To determine the incumbent sorption process of an
adsorptive in contact with the simulated porous net-
works, it is necessary to take into account some spe-
cific criteria that are adequate for the filling of a pore
with condensate or with vapor during an ascending or
descending process, respectively [11–13]. These cri-
teria are included ab initio in the calculating sorption
program and are related to: (1) the critical conditions
imposed by the Kelvin equation through a radius of
curvatureRc, for a phase transition to occur in a porous
entity of a given geometry, and (2) to the sorptive co-
operative phenomena that arise between neighboring
elements depending on the states (empty or filled with
condensate or vapor) of the porous entities involved in
the process. We recognize the importance of the multi-
layer adsorbed film existing in pore entities, since the
thickness of this film will indeed influence the con-
ditions at which phase transitions occur in the pores.
The effect of the adsorbed film will not be included
in this work for the sake of simplicity. Furthermore, if
we think that our simulated networks have sufficiently
large pore sizes, then the effect of the adsorbed film
may be negligible.

Specifically, for condensation and evaporation
to occur in sites and bonds, requirements are as
follows:

• Condensation of the adsorptive inside a vapor-filled
bond (assumed as a hollow cylinder open at both
ends) can occur in two possible ways: (1) by anin-
dependentfilling, when half the value of the present
critical radius of curvature (Rc/2) is equal to the pore
radius; (2) by anassistedfilling when a liquid–gas
meniscus invades a bond (of a radius lesser thanRc
but larger thanRc/2) from at least one of its two
neighboring sites. In this latter case the bond is liq-
uid filled ahead of theRc value at which it would
have occurred if the void were isolated; condensa-

tion has already proceeded in the site and pursued
to the bond in question.

• Condensation in a site (assumed as a hollow sphere
connected to neighboring homologous sites through
C bonds) will occur in the following way. Besides
the requirement to have a radius smaller thanRc,
a site will be completely invaded if onlyC or at
leastC − 1 of their bonds are already filled with
condensate. This guarantees the formation and ad-
vancement of a continuous meniscus towards: (1)
the center of the site (for the case ofC liquid-filled
bonds) or (2) to the remaining empty bond (for the
case ofC − 1 filled bonds). In this latter case the
liquid front continues its advancement into the re-
maining empty bond, invading it completely with
condensate (i.e. an assisted bond filling occurs).

• Evaporation from a site or a bond requires two con-
ditions to be concurrently satisfied. First that the
radius of the element be larger thanRc and second
the existence of a continuous vapor trajectory from
the pore to the bulk vapor phase.

Fig. 3. Ascertainment of Theorems 1 and 2 of theISDT, in networks
constructed by Monte Carlo methods: (a)PA curves for Network
1; (b) PD curves for Network 1; (c)PA curves for Network 2;
and (d)PD curves for Network 2.
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In this work, the sorption curves calculated through
the Monte Carlo method will be derived assuming that
both sites and bonds contribute to the sorbed volume.
The sorption isotherms then will be plotted in terms of
Rc versusθv, the number fraction of voids filled with
capillary condensate.

Finally, sometimes justification or contravention of
some of the theorems advanced by theISDTwill also
be made through the use of probabilistic expressions
describingBA, BD, PAandPD sorption processes and
that have been derived elsewhere [11,12].

3.3. Assessment of the ISDT theorems from the
DSBM non independent pore domain point of view

Cubic porous networks withC = 6 and consisting
of 80× 80× 80 sites and its corresponding 3× 80×
80× 80 bonds, are generated by a Monte Carlo pro-

Fig. 4. Ascertainment of Theorems 1 and 2 of theISDT, in networks constructed by analytical equations: (a)PA curves for Network 1;
(b) PD curves for Network 1; (c)PA curves for Network 2; and (d)PD curves for Network 2.

cedure previously described in [8,14]. Two Gaussian
distributions have been used in this work as site and
bond input functions, their parameters are as follows:

Network 1. Mean size for bonds,RB = 72 a.u. (a.u.
arbitrary units), mean size for sites,RS = 252 a.u.,
standard deviation for sites and bonds,σB = σS =
12 a.u.

Network 2. Mean size for bonds,RB = 108 a.u.,
mean size for sites,RS = 216 a.u., standard deviation
for sites and bonds,σB = σS = 12 a.u.

These networks have been chosen to exemplify the
appropriateness of theISDT theorems in the case of
non-independent domains because of the following
reasons.

Network 1 corresponds to a type I in theDSBM
classification [11] withΩ = 0. This means that the
diameter of the largest bond is lesser than the radius
of the smallest site. This causes that condensation in
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both pores and bonds occur independently; bonds will
be filled first in a sequential manner from the small-
est to the largest one followed by sites in the same
sequential fashion. Bonds acting as stoppers, on the
other hand, will control evaporation and a percola-
tive invasion by vapor will be expected in this type of
structures. The behavior of this network will resemble
that observed in independent domains for the cases of
BA andPA curves. Therefore, the interest of studying
this type of substrate resides in proving or refuting
the latter assertion. Conversely, descending processes
should be expected to markedly differ from the beha-
vior shown by independent domains.

Network 2 corresponds to a type II of theDSBM
classification [11]. In this substrate, there arise coope-
rative phenomena during both ascending and descend-
ing processes. The sorption properties of this network
will divert from those of independent domains and
the difference will be more accentuated than for

Fig. 5. Ascertainment of Theorems 3a and 3b of theISDT, in networks constructed by Monte Carlo methods. Slopes of primary curves
compared to those of boundary ones: (a) and (c) boundary andPA curves for Networks 1and 2, respectively; (b) and (d) boundary andPD
curves for Networks 1 and 2, respectively. Dashed lines indicate the values ofRc at whichB(Rc) = (C −2)/(C −1) for descending curves.

Network 1. Besides geometrical restrictions imply an
extra degree of correlation between pore elements
in this network. In fact there exists some preference
in having large sites surrounded by large bonds and
small sites to be connected to small bonds. This is
called a size segregation effect and influences very
much the occurrence of capillary phenomena within
substrata of this kind.

In brief, Network 2 is expected to show farther de-
viations than Network 1 with respect to the fulfillment
of the theorems supplied by theISDTwhen ascending
processes are involved.

3.3.1. Specific results on the fulfillment or contraven-
tion of ISDT theorems in non-independent domains

3.3.1.1. Theorems 1 and 2.SimulatedPD and PA
curves for Networks 1 and 2 are presented in Figs. 3
and 4. On the one hand, Theorem 2 is fulfilled in the
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case of Network 1 since both thePD andPAcurves are
asymptotic to the points of inception and conclusion
of theHL, respectively. On the other hand, fulfillment
of Theorem 1 is not complete in the case of Network
2, since although thePA curves practically intersect
the BA curve before reaching the point of closure of
the HL, the PD curves are in contrast asymptotic to
the inception point. The same conclusions are reached
when using the probabilistic equations that allow the
tracing ofPD andPA curves, Theorem 2 is satisfied
for Network 1 in the way of a series of asymptotic
PA and PD curves. In the case of network 2 again
PA curves practically intersect theBA curve (see Fig.
4), something that is not so forPD curves since these
approach theBD curve asymptotically.

An explanation for this behavior in the case of
Monte Carlo calculations, is that Network 1 possesses
pore entities that are no correlated at all: first bonds and
sites afterwards fill gradually, according to their sizes

Fig. 6. (a) Slopes of descending scanning curves of different orders
— 1: primary, 3: tertiary, 5: quinquenary, 7: septenary, Network
2. (b) Slopes of ascending scanning curves of different orders —
2: secondary, 4: quaternary, 6: sexenary, 8: octonary, Network 1.

along theBA curve. In the case of Network 2 there is
already certain interdependency between the filling of
neighboring entities. ThePA curves practically reach
theBA curve whenRc ≈ 2R∗

c , thus the filling of pore
entities change from a gradual to a more intense one,
once the independent filling of bonds is reassumed. It
can be said as Everett [3] stated before that a broad
distribution of domain properties redounds in asymp-
totic sorption curves (i.e. Network 1) and a narrower
distribution redounds inSC intersecting the bound-
ary ones before the closure and inception points (i.e.
Network 2).

3.3.1.2. Theorems 3a and 3b.For Networks 1 and
2 (Fig. 5a and c, respectively) show the evolution of
the slopes of a series ofPA curves dθS/dRc in terms
of Rc. Fig. 5b and d represent the same slope evolu-
tion for a series ofPD curves. From these graphs it
can be seen that the initial slopes of eitherPA or PD

Fig. 7. Ascertainment of Theorem 4 of theISDT. Loops AB are
traced between the same limits for both (a) Network 1 and (b)
Network 2.
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curves are zero, thus confirming the expectations of
Theorem 3a.

With respect to Theorem 3b, in the case of Network
1, it can be observed the slope of theBA curve is
always higher than the slopes of its lower orderPA
curves (see Figs. 5a and 6b). Theorem 3b is faithfully
fulfilled, thus once more reflecting the independent
liquid filling of pore cavities according to size in this
type of network.

In the case of Network 2 it can be observed in Fig. 5c
that the slope of theBAcurve is higher than the slopes
of its lower orderPA curves for most part of theRc
interval except at low values of this parameter. There
is a maximum slope forPAcurves at intermediate val-
ues ofRc. This maximum occurs whenRc ≈ 2R∗

c ,
at which point the independent bond filling reassumes

Fig. 8. Ascertainment of Theorem 6 of theISDT. (a) Crossing ofPD andPA curves at pointP for Network 1. (b) Crossing ofPD andPA
curves at pointP for Network 2 (a.1 and b.1). Complexion diagrams for thePD curves (a.2 and b.2). Complexion diagrams for thePA curves.

after evaporation had been interrupted at the inversion
point. The smaller initial slope values (i.e. at lowRc)
are due to the filling of sites that are surrounded by
C − 1 already filled bonds. Once these sites are occu-
pied there is a discontinuity since the filling proceeds
gradually until reaching a percolation threshold when
Rc ≈ 2R∗

c , after which the filling is continued again
but in a more tenuous way. The discontinuity above
mentioned occurs when a critical proportion of bonds
are filled with condensate, causing the sudden liquid
invasion of sites of sizes smaller thanRc.

Thus, for Network 1 Theorems 3a and 3b are com-
pletely fulfilled in the case ofPA curves; however this
is not true forPD curves. In this case, the evaporation
threshold appears when the blockage to the entrance
of the vapor phase, imposed by liquid-filled elements,
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is removed. Thus, before the evaporation threshold ap-
pears, there is a plateau region of variable extension
depending on the location and order of the descending
curve. For either Network 1 or Network 2 Theorem 3b
is not but partially fulfilled over the wholeRc range
(Fig. 5b and d). At largeRc values the slope of a higher
order PD curve is steeper than the slope of theBD
curve (see Fig. 6a), but the converse is true at lowerRc
values. At highRc’s, the free vapor path required for
a pore to be emptied of condensate, is indeed harder
guaranteed for the case of theBD curve than for any
of thePD curves. This happens since desorption along
the BD curve at highRc values, i.e. at high relative
pressures, starts from a completely liquid-filled sys-
tem. This is not the case ofSC, where the reversal
point corresponds to a partially liquid-filled structure.
With respect to the extension of the plateau the per-
colation threshold for vapor invasion [15] is given at
a Rc value such thatB(Rc) = (C − 2)/(C − 1), this is
approximately fulfilled by theBD curve.

3.3.1.3. Theorem 4.This theorem is fulfilled by both
Networks 1 and 2 in the sense that if the system is
at stateA (Rc = RCA), afterwards taken to stateB
(RCB), and whenRc is reversed toRCA again, then
the system will return to stateA. Fig. 7a and b show
the subsidiary loops obtained through this procedure.
However Theorem 4 is not fulfilled in the sense that
any oscillation ofRc between two given limitsRCA

andRCB, should lead to a loop of constant shape inde-
pendently of the position of stateA in the loop (com-
pare the two subsidiary loops in Fig. 7a and b). The
difference in shape between subsidiary loops may be
ascribed to the different domain complexions existing
at the differentA points at which the subsidiary loops
have begun: the intensities of cooperative phenomena
during adsorption and desorption and thus the shape of
a subsidiary loop depend on the state of the system at
point A.

3.3.1.4. Theorem 5.This theorem is completely ful-
filled for both Networks 1 and 2. Fig. 7a and b show
the evolution of a system for a secondary ascending
scanning curve and for a system that has undergone
first a loop from the same starting point that the sec-
ondary curve and then reassumed its movement. It is
from pointB that the two trajectories moves up to point
C, thus fulfilling the expectations of Theorem 5. The

cyclical processBAB restores the system to the do-
main complexion state that existed before of the start
of the subsidiary loop.

3.3.1.5. Theorem 6.This theorem is appropriate for
Networks 1 and 2. Fig. 8a and b show the departures
of PA and PD curves after coinciding at some point
P; complexion diagrams are shown for each curve at
the intersection point. The system acquires different
domain complexions depending on the route followed
to reachP, so that different approaches to this point
result in different departing trajectories when the sys-
tem moves away fromP.

3.3.1.6. Theorem 7.Once again this theorem is
faithfully complied by Networks 1 and 2. The spi-
ral trajectories shown in Fig. 9a and b are graphical
proofs of the validity of this theorem in the case of
interacting pore domains.

Fig. 9. Ascertainment of Theorem 7. Spiral trajectories for (a)
Network 1 and (b) Network 2.
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4. Conclusions

On the one hand Theorems 1, 2, 3a, 3b and 4 of the
ISDTare of a limited qualitative validity, for the case
of porous structures constituted by non-independent
pore domains, depending on the porous topology of the
network: the lesser correlated the pore elements are,
the greater is the accordance with the predictions of the
ISDT. For the case of a network type I in the DSBM
classification, all theorems involving ascending curves
are completely fulfilled.

On the other hand, Theorems 5–7 are indeed qualita-
tively valid for sorption processes in both independent
and non-independent structures no matter the topolog-
ical nature of the porous network.

An additional observation is that percolation thresh-
olds can be detected, in general, for ascending and
descending processes in the case of non-independent
domains. Percolation thresholds for ascending pro-
cesses only occur for the case of correlated structures
but not for type I structures.

In this work, substrata have been assumed to be lat-
tices of constant connectivity, it would be interesting
to see what happens with a network of variable con-
nectivity with respect to the theorems of theISDT.
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