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Abstract

The classical and elegant independent sorption domain theory introduced by Everett marked a milestone in the field of
adsorption, since it allowed via their famous complexion diagrams a straightforward visualization of the state of individual
pores, i.e. filled or emptied of condensate according to their sizes, of an adsorbent in contact with a vapor. The principal
results of the independent domain theory are comprised in a series of theorems. The applicability of these theorems is now
examined from the point of view of the dual site-bond model, a non-independent pore domain approach that has been proved
to be very useful to simulate porous networks and capillary phenomena occurring wherein. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction to the level of the whole network, through the sum-
mation of individual pore hysteretic contributions.
Everett's independent domain theory of sorption Among the results provided by thkSDT two are
hysteresis(ISDT) first saw the light between 1952 very important: (1) the state of each pore entity can
and 1955 in a series of publications in the trans- be visualized through domain complexion diagram
actions of the Faraday society [1-4]. The main as- a graph in which every pore domain is identified as
sumption of the theory consisted in visualizing the either full or empty of capillary condensate according
porous network as an assemblage of independentto its size; (2) the shapes and qualitative behavior
pores, whose behavior during the capillary process of scanning curves or subsidiary cycles within the
not depended on each other. Every pore domain main hysteresis loop can be inferred from a series of
was characterized by two quantities; each indicat- theorems.
ing, respectively, the critical conditions at which the  In spite of the success of th&DT in explaining
vapor — liquid and the liquid— vapor irreversible  several experimental sorption facts, Everett himself
transitions there occurred. Hysteresis was then rec- [5] pointed out that a more general theory of sorption
ognized at the level of one pore and brought about hysteresis should be necessary in order to improve
the agreement between experimental and theoretical
* Corresponding author. expectations found so far through tHeDT. Thus, it
E-mail addressfernando@xanum.uam.mx (F. Rojas). would be essential to consider the appropriate cor-
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relations that arise among the voids of an intercon- 2. Theory

nected porous network in order to adequately interpret

or simulate a given sorption process. An approach 2.1. Basic aspects [5]

of such a kind would constitute a non-independent

domain theory. Thedual site-bond mode(DSBM An adsorption isotherm of a vapor on an adsorbent
of complex media allows the construction of topo- solid surface (in which the amount of gas adsorbed is
logically heterogeneous porous networks, based onpjotted against the relative vapor pressure: p/ p°
the recognition of two basic void elements that of the adsorptivep being the vapor pressure apa
constitute the substrate: thetes (cavities) and the  the saturation vapor pressure at temperafiiyeex-
bonds (throats, capillaries). The heterogeneity of a hibits several characteristics (see Fig. 1). Usually, the
porous network can be ascribed to the following isotherm displays aysteresis loogHL) delimited by
properties: theboundary ascendin(BA) curveand theboundary
1. descendingBD) curve The lowest value of that cor-
responds to the onset of the hysteresis phenomenon
is known as thenception point whilst the highesk
point at which the loop closes is tlodosure point at
these two points both tHBA and theBD curves coin-
cide. Aninfinite number of different trajectories can be
drawn within the hysteresis loop; all these correspond
to scanning processes.giimary scanning ascending
process PA) consists in an adsorption path starting
at some point on th&D curve (thepoint of reversal
or inversior) that finishes at some intermediate point
within the HL, the scanning process concludes when
This work gives emphasis to the ascertainment or theBA curve is reached. Arimary scanning descend-
not of the theorems advanced by tB®T, withrespect  ing curve PD) consists in a desorption process started
to sorption processes occurring in non-independent gt some point of th&A curve (point of reversal) and
pore domain systems. First, some basic notions con- continued down to some point in théL, here again
cerning the main characteristics of a typiCﬁ' sorption the Scanning process ends if BB curve is reached.
isotherm and some of the different processes de- The critical conditions for condensation or evapo-
veloped within its hysteresis loop will be outlined. ration of a substance to take place in individual pores

Second, a general overview of thBDT and its in-  can be predicted by means of the Kelvin equation:
cumbent theorems will be presented. Third, funda-
1)

mentals of theDSBM and analytical expressions of RTIn ﬂo =o'/l
some sorption processes occurring in such a substrate

will be provided in order to realize the type of par- where ¢'9 is the surface tension of the liquid—gas
ticularities involved during pore filling with a given interface,v' the molar volume of the adsorptive!?
fluid. Finally, the results supplied by tH2SBM with the curvature of the liquid—gas interfade,the gas

pores can adopt different sizes according to a
preestablished twofold distribution of sites and
bonds [6,7],

. the connectivity, that is the number of neighbors
to which a pore cavity is interconnected, can vary
from one site to another [8],

. there may arise geometrical restrictions among

bonds [9], in the sense that there should exist no

interpenetration between any pair of pore channels
before reaching the cavity to which both bonds are
being connected.

respect to the validity or contravention of the theo-
rems of thdSDTapproach about sorption phenomena
taking place in non-independent pore domains will be

constant and the absolute temperatu@ is related
to R., the mean critical radius of curvature of the
liquid—gas interface through the equatioty = 2/R..

discussed. This discussion will be made for the case The different menisci geometries that arise when
of selected porous networks with a minimal num- condensation or evaporation processes take place, are
ber of constraints. Monte Carlo sorption simulations the causes of the hysteresis observed at the level of
will be employed to determine the sorption curves a single pore [10]. Neglecting the influence of the
and sometimes, when possible, analytical expres- adsorbed layer, a spherical pore of radRg will
sions will be used to describe a particular sorption become filled with condensate when the radius of
process. curvature of the interface appearing inside the void
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Fig. 1. Sorption isotherm showing the main hysteresis Iddip) (the boundary ascendin®A4) curve, the boundary descendirg¥) curve,
a primary ascendingP@®) curve, a primary descendingD) curve and a subsidiary loop.

is equal to the pore radiusRf = Rgp). In turn a formed by equal spheres in hexagonal close packing,
cylindrical capillary will become filled with liquid if the pore domains may be identified with the tetrahe-
the interface has a radius of curvature twice as that of dral and octahedral cavities (sites, antree), which are
the cylinder Rc = 2R.y|). Evaporation of condensate joined through windows (constrictions, necks) with
from a cylindrical pore occurs wheRe = Ry the shapes of triangular foramina. An isolated pore
domain have well-defined condensation—evaporation
2.2. Fundamentals of the domain theory of sorption characteristics involving one or more spontaneous
hysteresis [1-5] irreversible steps.
Each pore domain can be characterized by two
Sorption hysteresis in porous media can be analyzedrelative vapor pressure valuegy andxps, that indi-
on the basis of Everett’sSDT. In this treatment, in- cate the onsets at which irreversible condensation or
dividual sorption pore hysteresis properties (related to evaporation phenomena take place, respectively. The
the conditions required for an isolated pore entity to quantity x;> represents the relative pressure required
be fully invaded by a certain fluid) manifest together for a pore domain to be filled with capillary conden-
during the occurrence of the capillary process and sate, by displacing the vapor phase that was originally
help explaining the sorption hysteresis phenomenon occupying the cavity. The quantityp; represents, in

observed at the level of the whole substrate. turn, the conditions required for the liquid—gas in-
In this work, the porous structure is envisaged as terface to sweep throughout the cavity removing the
a collection of independent or isolatedre domains liquid-like phase while substituting it with vapor.

Citing Everett [5], a pore domain is a region of pore For adsorption—desorption processes occurring
space accessible from neighboring regions through within an isolated pore domain, it is always found that
pore constrictions. In the simple case of the pore spacex12 > xp1, therefore, the reason giore hysteresis
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This inequality can be visualized graphically via a extents of liquid- and vapor-filled elements can be
diagram in which pore domains are located inside the appreciated while distinguished from each other. A
limits of an equilateral triangle of basg, and height complexion diagram is a plot depicting the pore size
x21. Reversible adsorption—desorption properties may distribution function below which there are lines that
sometimes arise (e.g. a cylindrical pore open at one delimit blank areas (vapor) from black-areas (conden-
end and closed at the other, can be liquid-filled and sate) (Fig. 2a and & (R) representing the pore size
liquid-emptied reversibly) and are located around the distribution function).
hypotenuse of the triangle. Associated to each ele- A BD process can be visualized through the move-
ment of area in this triangular diagram, there exists ment of a horizontal line from top to bottom of a com-
a quantityv(X12, x21) such thatv(x12, x21) dx12dx21 plexion diagram. Having all pores initially filled with
represents the volume of the pore domains containedcondensatex( = 1) and if then the relative pressure
between {12, x12+dx12) and (21, x21+dx21). Thus, is decreased to some valugthis desorption process
the volume density distribution function(xi2, x21) will cause that some pore domains be now emptied
characterizes the properties of the pore domain. of condensate. The volume of liguMremaining in-
side the pore domains after the desorption process has

taken place fromx = 1 tox is (Fig. 28 and ¢):
. . . . . 1 px12
~ The foundation of this theory consists in imagin- , _ 1, _/ / 012, x27) dor dri @)
ing that the porous medium is made of a collec- x Jx

tion of individual non-interacting pore domains (e.9. A pPD curve consists of a desorption process origi-
an arrangement of parglle_l _non-interse_cting capil- pated at an upper relative pressue (i.e. the point
lary tubes). Therefore, individual domain volumes  uf inversion) on théBA curve down to a lower relative
v(x12, x21) dx12dxp1 can be added together to build  pressurex in the hysteresis cycle. The correspond-
an overall distribution function embodying the dis- ing domain complexion diagram of a particular state
tribution condensation—evaporation properties of the ro5cneq through &D curve can be obtained by the
whole adsorption system. movement of a vertical line from = 0 tox,; followed

If the values ofu(x12, x1) are plotted vertically to py the displacement of a horizontal line froq to x.
the triangular base of the plang, x21, then a surface A PA curve consists of an adsorption process initi-
appears over this plane. The volume comprised be- ateq at the lower point of inversiog located on the
tween this surface and the triangular base fram= BD curve, followed by an adsorption process from this
0-1 represents the total porous spacg, state to an upper poing, lying somewhere within the
hysteresis loop. Construction of the domain complex-
ion diagram involves the movement of a vertical line
from the point of inversiorx; to the upper limitx, of
When a certain state of the adsorption process in the the PA curve.
porous substrate is reached, the voluvhef all pore
domains filled with condensate (having started with 2.3.1. Theorems stated by the ISDT
an empty pore system at zero pressure) at a relative These are the theorems advanced byl82T:
vapor pressure is given by

2.3. The ISDT

1 px12
VP = /0 /0 v(x12, x21) dxz1 dx12 2)

Theorem 1. If the PD curve fromx, meets the BD at

X [X12
V= / / v(x12, x21) dx21 dx12 3) x7, then the PA curve fromy; meets the BA at,,.
o Jo

Graphically, aBA process of this kind can be rep-
resented by the movement of a vertical line from
left (x = 0) to right (12) across the triangular base
(Fig. 2c). A diagram representing this and other
types of sorption processes has been callddraain
complexion diagramIn this type of diagram, the

Theorem 2. If all the PD curves converge on the
lower inception point of the HL, all the PA curves will
converge on the upper closure point.

Theorem 3a. The slope of any scanning curve (SC)
is zero at the point of reversal
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Fig. 2. Domain complexion diagrams forBA curve (at left) and 8D curve (at right), at certain stages of the corresponding sorption
process. Black and gray areas represent pores filled with condensate, blank areas correspond to vapor-filled pdyemda eomplexion
diagrams; (b, B sorption curves; (c,’§ triangular diagrams. Areas in gray correspond to blocked pores during the descending process.

Theorem 3b. The slope of any SC at a given value of Theorem 5. If, when the system returns to A as envis-
X is less than the slope at the same value of x of all aged in Theorem 4, x continues to increase, the system
curves of lower order into which it runs, when, for an will move along the same curve as that which would
ascending curve, X is increased, or for a descending have been followed if no loop had been traversed
curve x is decreased. from A.

Theorem 4. If the path of the system is reversed at Theorem 6. Any point P within the HL can be

A (x = x4) and x is changed tap and back tox,, reached in an infinite number of ways, some from
then the system will return to A. Any oscillation of x lower values of x, some from higher. The system
between the given limitsy andx g will lead to a loop will have definite static macroscopic properties at
of constant shape and area independent of the position this point, but its state will not be completely de-
of A in the loop. fined since its behavior when it moves away from
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P depends on the route by which this point was so that the probabilities to find a sit§(R), or a bond,
approached. B(R), having a sizeR or smaller are, respectively:

. . R
The_ore_m 7. If a system is tgken throggh a series of S(R) = / Fs(R) dR:
oscillations of x of decreasing amplitude, after the

nth reversal the system moves towards the point at R

which the(n — 1)th reversal occurred, if the system is B(R) = / Fg(R)dR ()
carried through this point it moves towards tke — 0

3)th reversal point and so on An important parameter of the two-fold distribution

of sites and bonds is the degree of overlappiRg
betweerFs(R) andFg(R), i.e. the common area shared
between the two distributions2 is a measure of the
size correlation existing among pore entities.

A construction principle(CP) emerges from the
very definitions of site and bond: the size of any
¢ bond should be always smaller than or at most equal
to the size of the site to which it is linked. Two

2.4. DSBM of disordered media

As stated by Everett, the predictions provided by
the ISDT are, in general, fulfilled qualitatively when
considering the areas of thxg,, X21 plane over which
integrations are performed to visualize the amount o
pores filled with condensate during a sorption process.

However, those predictions that involve actual values Self-consistency laws guarantee the fulfilment of the
of the volume integrals are of less general validity CP. The first law establishes that bonds must be suf-

([5], p. 1100). An additional inconvenient is that the ficiently small and supplied in such a number as to be

independent domain theory has failed to account for all @ccommodated together with all the sites belonging

the experimental observations and a non-independent!© & given size distribution. , ,
domain theory is thus required. A second law is still required since whehis con-

The DSBM of disordered media conceived by siderable, there may appear topological size correla-
Mayagoitia is especially convenient to perform a t|0n_s petween nelghponng pore el_ements. Therefore,
proper modeling of porous structures [6-9]. Before the jointevent of finding a site of sizes linked to a
starting the study of any capillary process in a porous bond_of S|zeR5 is not mdgpendent and the probability
medium, a proper idea of the topology of the substrate density for this to occur is
shpuld pe born(_a in mmd..An ade.quate modgl will h_elp p(RsN Rg) = Fs(Rs)Fa(Rg)¢(Rs, Re) (6)
to identify possible pore interactions occurring during
a capillary process and that tH8DT cannot envisage.  The second law can be expressed as

The principal characteristics of tHeSBM are as

S . Rs, Rp) = forR R 7
follows. The porous solid is modeled as an intercon- ¢(Rs, Rg) =0 forRs < Rg 0
nected network of two kinds of alternated voidiies If the randomness in the topological assignation of
(cavities) andbonds(necks, windows). Every site is  sizes is raised up to a maximum, while complying with
connected t& neighboring sites by bonds; each bond the CP, the mostverisimilar (likely) form of ¢ for the

is the link between two site<C(denotes the&eonnec- correct caseRs > Rp is obtained:
tivity of the network).C can vary from site to site, for SRS
simplicity it will be assumed here as constant and so in exp(— S(Rey US/(B — S))
this work the network will resemble a regular lattice. ¢ (Rs, RB) = B(Rs) — S(Rs)
The theory establishes that instead of considering s s
only the size distribution of voids without paying at- exp(— zﬁ%ls))dB/(B _ S))
tention to the kind of element (site or bond) to which = (8)

the pores belong (as it has been traditionally done), B(Rg) — S(Rs)

it would be more appropriate to consider a two-fold These topological size correlationships promote a
distribution of sizes. In this wa¥s(R) andFg(R) are size segregation effectonsisting in that sites and
defined as the normalized size distribution functions bonds of the bigger sizes join together to form re-
(on a number of elements basis) of sites and bonds, gions of large elements, while elements of the smaller
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sizes reunite to constitute alternated regions of small
entities. This effect becomes more important as

increases. The consequences of this effect on the de-

velopment of capillary processes are of the utmost
importance.

The CP can be extended or reformulated to al-
low for more constraints when constructing the
porous networks. Variable connectivity or geometrical
restrictions may be allowed for.

2.4.1. Analytical expressions for sorption domain
complexions

Analytical expressions describing the states of
porous entities (filled with liquid or vapor) during

147
then:
1 k= %
Oe(R) = [1—(@—n? for Re p _p (10)
0 2
R > RC

wherelJ is the probability that a bond being invaded
by condensate in an assisted manner from a delimiting

site, and for the case whem = 0, J is given by
J =I1"1S(Ro) (11)

where,| represents the probability that a neighboring
bond (not the incumbent one but any of the remaining

diverse sorption processes have been previously esta<C — 1 bonds linked to this delimiting site), be already

blished [11,12]. In these expressighgR) anddg(R)
represent, respectively, the fraction of sites or bonds
of size R that are filled with capillary condensate at
a particularR.. The overall degrees of filling of sites
and bonds are then:

o5 = / 6s(R)Fs(R) dR;
0

O = fo 66(R) Fa(R) dR )

In order to establish the particular sorption expres-
sions, geometries have to be assigned to sites an
bonds. In this work sites will be considered as hol-
low spheres and bonds as hollow cylinders open

at both ends. Therefore, sites have several poles at
which bonds are connected to them. Furthermore, the

connectivity of the networlC will be assumed con-
stant. All the following equations are mean field or
Bragg—Williams approximations. Analytical expres-
sions for scanning curves of an order higher than one
are less accurate because of an extended applicatio
of the mean field approximation and will not be dealt
with in this work.

2.4.1.1. BA curve. Bonds, conceived as hollow
cylinders, can fill in two ways. Independently if the
bond radius is smaller than or equalRg/2, through

a mechanism described by Everett and Haynes [10],
or assistedly when one of its two delimiting sites
becomes filled with condensate [13]. Domain com-
plexions for bondsgg(R), along theBA curve are

filled by condensate in an independent or assisted way:

(%) oo ()

So that all bonds witlR < R¢/2 will be completely
filled with condensate and those with> R:/2 may
be filled or not depending on the topology of the net-
work and state of the system.

Correspondingly, domain complexion expressions
for sites along thé3A curve are

{ IC+cCcIcta-1n

12)

R < R¢

for R> R,

Os(R) = 13)

dThese expressions arise since a site can be filled with

condensate whe@ or at leastC — 1 of its delimiting
bonds have been invaded by condensate [13]. In this
latter case the liquid—gas interface will proceed into
the remaining empty bond causing its assisted filling
with condensate.

2.4.1.2. BD curve. Domain complexions for sites

noluring this boundary process are given by the expres-

sions:

(1-K)¢
1

R > Rc

for R = Re

6s(R) = { (14)

K is the percolation probability that vapor invades the
site, wherein two conditions are comprised: (a) the site
should be large enoug® (> R¢), and (b) there should
exist a continuous trajectory to the bulk vapor phase
from the site in questiorK is then given fox2 = 0 by

K=[1-BR)1-1-K* (15)
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For bondsgg(R) is given by

(1-1L)?

O(R) = { 1 for Bz Re

L being the probability of vapor invading the bond, for
£2 = 0 this quantity becomes
L=1-{B(Ro)+[1 - B(RIIL—- D)}t (17)

This expression fok arises from the fact that a bond
will be invaded by vapor if (1) it is larger thaRc,

and (2) there is a continuous path to the vapor phase

through any one of the remaining— 1 bonds linked
to the site delimiting the bond in question.

2.4.1.3. PA curves. Conditions at the reversal point
on theBD curve are marked with an asterisk;(R)
then being the degree of filling of a site of siReat
this point. Domain expressions for sites are given by

0s(R)
B { 0L (R) + [(1—0L(RIISH+CIS (A — Ipp)]
0S(R)
R<R
for x> ke (18)

Whilst for bonds we have

1
O8(R) = { ,
B5(R) + [(L— BRI — (1 — Jpw)?]

R,>R
r
Ru<RSRC

fo (19)

Ry being eitherR¥ or R./2 whichever is larger, and in
the case whe2 = 0, Jpa and Ipa are given by

Jpa = ISTES(Ro) (20)
Ipa= B(Ry) + (1 — B(R)[05(R)
+(1 — 65 (R) Jpal (21)

2.4.1.4. PD curves. The treatment is similar to the
BD curve. For sites the degree of filling with conden-
sate is

R > R{

Os(R) = r
S(R) R: > R

05(R)(1— Kpp)© 2)
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6&(R) being the degree of filling of a sife with con-
densate at the point of reversal akigp given by

_ 0(Re)

Kpp = = - —[1-B(R)[1 - (1 - Kpp)“™1  (23)
B
And for bonds
05(R)(1 — Lpp)? R:>R > R
68(R) = { 65(R) for Rc> R > R
1 R < R
(24)

whereR may beR?/2 or R., depending on which is
the smallestLpp is expressed as
Lpp=1-S(RY)
B(Ri) + [B(Rc) — B(R)]0(R)
+[1 — B(Ro)]0g(R)(1 — Lpp)
08

c-1

(25)

3. Results and discussion

3.1. Construction of porous networks by a Monte
Carlo method

The strategy to be used in this work in order to as-
certain the validity or contravention of th8DT theo-
rems in the case of sorption phenomena occurring in
non-independent porous networks, is as follows. Het-
erogeneous three-dimensional porous networks (het-
erogeneous in the sense of having pores of different
sizes subjected to some geometrical restrictions) con-
sisting of a given number of void elements and con-
structed according to the premises of 8BM will
be used to model non-independent domain substrata.
The required twofold distribution for constructing the
porous networks will be chosen as a double Gaussian,
with no overlap between the site and bonds functions
(£2 = 0). The networks will be regular cubic 3-D lat-
tices (i.e. with a constant connectivity of 6) with a
constant node to node distance equal to 1.1 times the
diameter of the largest site; sites will be allocated at
the nodes of the network. Bonds will be connected in
between the sites in such a way as to concurrently ful-
fill two conditions: (1) to be smaller than the site and
(2) to avoid any interference with another neighboring
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bond. This last condition is a geometrical restriction
meaning that two orthogonal bonRg; andRg; could

be connected to a site of siRg if only the following
condition is fulfilled:

Rs > \/RE; + RE,

3.2. Simulation of sorption phenomena within
selected substrata

(26)

To determine the incumbent sorption process of an
adsorptive in contact with the simulated porous net-

works, it is hecessary to take into account some spe-

cific criteria that are adequate for the filling of a pore
with condensate or with vapor during an ascending or

descending process, respectively [11-13]. These cri-

teria are included ab initio in the calculating sorption
program and are related to: (1) the critical conditions
imposed by the Kelvin equation through a radius of
curvatureR;, for a phase transition to occur in a porous
entity of a given geometry, and (2) to the sorptive co-

operative phenomena that arise between neighboring

elements depending on the states (empty or filled with
condensate or vapor) of the porous entities involved in
the process. We recognize the importance of the multi-
layer adsorbed film existing in pore entities, since the
thickness of this film will indeed influence the con-
ditions at which phase transitions occur in the pores.
The effect of the adsorbed film will not be included
in this work for the sake of simplicity. Furthermore, if
we think that our simulated networks have sufficiently
large pore sizes, then the effect of the adsorbed film
may be negligible.

Specifically, for condensation and evaporation

1

N

5:)

0

to occur in sites and bonds, requirements are as !

follows:

e Condensation of the adsorptive inside a vapor-filled
bond (assumed as a hollow cylinder open at both
ends) can occur in two possible ways: (1) byian
dependertilling, when half the value of the present
critical radius of curvatureR¢/2) is equal to the pore
radius; (2) by arassistedilling when a liquid—gas
meniscus invades a bond (of a radius lesser BRan
but larger tharR./2) from at least one of its two
neighboring sites. In this latter case the bond is lig-
uid filled ahead of thér. value at which it would

=~

52

0 100

149

tion has already proceeded in the site and pursued
to the bond in question.

Condensation in a site (assumed as a hollow sphere
connected to neighboring homologous sites through
C bonds) will occur in the following way. Besides
the requirement to have a radius smaller tian

a site will be completely invaded if onlZ or at
leastC — 1 of their bonds are already filled with
condensate. This guarantees the formation and ad-
vancement of a continuous meniscus towards: (1)
the center of the site (for the case®@fiquid-filled
bonds) or (2) to the remaining empty bond (for the
case ofC — 1 filled bonds). In this latter case the
liquid front continues its advancement into the re-
maining empty bond, invading it completely with
condensate (i.e. an assisted bond filling occurs).

e Evaporation from a site or a bond requires two con-

ditions to be concurrently satisfied. First that the
radius of the element be larger thRp and second
the existence of a continuous vapor trajectory from
the pore to the bulk vapor phase.

200
R./au.

200
R. /a.u.

100 100 300

200
R./au.

300 0 100 200

R./au.

300

Fig. 3. Ascertainment of Theorems 1 and 2 of iBBT, in networks
constructed by Monte Carlo methods: @) curves for Network
1; (b) PD curves for Network 1; (c)PA curves for Network 2;

have occurred if the void were isolated; condensa- and (d)PD curves for Network 2.
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In this work, the sorption curves calculated through cedure previously described in [8,14]. Two Gaussian
the Monte Carlo method will be derived assuming that distributions have been used in this work as site and
both sites and bonds contribute to the sorbed volume. bond input functions, their parameters are as follows:
The sorption isotherms then will be plotted interms of ~ Network 1 Mean size for bondsfg = 72 au. (a.u.

Rc versusfy, the number fraction of voids filled with  arbitrary units), mean size for siteRs = 252 au.,

capillary condensate. standard deviation for sites and bonds, = os =
Finally, sometimes justification or contravention of 12au. _
some of the theorems advanced by 8B T will also Network 2 Mean size for bondsRg = 108 au.,

be made through the use of probabilistic expressions mean size for sitess = 216 au., standard deviation
describingBA, BD, PAandPD sorption processes and for sites and bonds;g = os = 12 au.

that have been derived elsewhere [11,12]. These networks have been chosen to exemplify the
appropriateness of th&DT theorems in the case of
3.3. Assessment of the ISDT theorems from the non-independent domains because of the following

DSBM non independent pore domain point of view  reasons.
Network 1 corresponds to a type | in theSBM
Cubic porous networks witl = 6 and consisting  classification [11] with2 = 0. This means that the
of 80 x 80 x 80 sites and its correspondingx330 x diameter of the largest bond is lesser than the radius
80 x 80 bonds, are generated by a Monte Carlo pro- of the smallest site. This causes that condensation in

0 100 200 300 0 100 200 300
R./au. R./au.

o] o]
100 200 300 100 200 300
R./a.u. R./au.

Fig. 4. Ascertainment of Theorems 1 and 2 of #8®T, in networks constructed by analytical equations: RA)curves for Network 1;
(b) PD curves for Network 1; (cJPA curves for Network 2; and (dPD curves for Network 2.
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both pores and bonds occur independently; bonds will Network 1. Besides geometrical restrictions imply an
be filled first in a sequential manner from the small- extra degree of correlation between pore elements
est to the largest one followed by sites in the same in this network. In fact there exists some preference
sequential fashion. Bonds acting as stoppers, on thein having large sites surrounded by large bonds and
other hand, will control evaporation and a percola- small sites to be connected to small bonds. This is
tive invasion by vapor will be expected in this type of called a size segregation effect and influences very
structures. The behavior of this network will resemble much the occurrence of capillary phenomena within
that observed in independent domains for the cases ofsubstrata of this kind.

BA andPA curves. Therefore, the interest of studying In brief, Network 2 is expected to show farther de-
this type of substrate resides in proving or refuting viations than Network 1 with respect to the fulfillment
the latter assertion. Conversely, descending processe®f the theorems supplied by th8DTwhen ascending
should be expected to markedly differ from the beha- processes are involved.

vior shown by independent domains.

Network 2 corresponds to a type Il of tHRSBM 3.3.1. Specific results on the fulfillment or contraven-
classification [11]. In this substrate, there arise coope- tion of ISDT theorems in non-independent domains
rative phenomena during both ascending and descend-
ing processes. The sorption properties of this network 3.3.1.1. Theorems 1 and 2SimulatedPD and PA
will divert from those of independent domains and curves for Networks 1 and 2 are presented in Figs. 3
the difference will be more accentuated than for and 4. On the one hand, Theorem 2 is fulfilled in the

(a) Slopes of B4 and PA curves. ‘g (b) Slopes of BD and PD curves.
% Network 1 % Network 1

80 RC/a.u. 100

(c) Slopes of BA and PA curves. (d) Slopes of BD and PD curves.
%U Network 2 0.2 Network 2
9
N 3
=] RN
0.03 1
R c
f
0.00- .
180 210 240 100 120 140
R CJ a.u. R C/ a.u.

Fig. 5. Ascertainment of Theorems 3a and 3b of ¥8BT, in networks constructed by Monte Carlo methods. Slopes of primary curves
compared to those of boundary ones: (a) and (c) boundarParairves for Networks 1and 2, respectively; (b) and (d) boundaryRidd
curves for Networks 1 and 2, respectively. Dashed lines indicate the valisabfwhich B(R¢) = (C —2)/(C — 1) for descending curves.
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case of Network 1 since both ti® andPA curves are
asymptotic to the points of inception and conclusion
of the HL, respectively. On the other hand, fulfillment
of Theorem 1 is not complete in the case of Network
2, since although th®A curves practically intersect
the BA curve before reaching the point of closure of
the HL, the PD curves are in contrast asymptotic to

F. Rojas et al./Journal of Molecular Catalysis A: Chemical 167 (2001) 141-155

along theBA curve. In the case of Network 2 there is
already certain interdependency between the filling of
neighboring entities. ThEA curves practically reach
the BA curve whenR¢ ~ 2R¢, thus the filling of pore
entities change from a gradual to a more intense one,
once the independent filling of bonds is reassumed. It
can be said as Everett [3] stated before that a broad

the inception point. The same conclusions are reacheddistribution of domain properties redounds in asymp-

when using the probabilistic equations that allow the
tracing of PD and PA curves, Theorem 2 is satisfied
for Network 1 in the way of a series of asymptotic
PA and PD curves. In the case of network 2 again
PA curves practically intersect tH&A curve (see Fig.
4), something that is not so f&D curves since these
approach théD curve asymptotically.

An explanation for this behavior in the case of

totic sorption curves (i.e. Network 1) and a narrower
distribution redounds irSC intersecting the bound-
ary ones before the closure and inception points (i.e.
Network 2).

3.3.1.2. Theorems 3a and 3bFor Networks 1 and
2 (Fig. 5a and c, respectively) show the evolution of
the slopes of a series &A curves ds/dR. in terms

Monte Carlo calculations, is that Network 1 possesses of R;. Fig. 5b and d represent the same slope evolu-
pore entities that are no correlated at all: first bonds and tion for a series oPD curves. From these graphs it

sites afterwards fill gradually, according to their sizes

d6,/dR,,

100 120 140
R/ au.
0.030
%b b BA A
< )
e
0.0151
6
8
0.000— :
100 200 300
RC/ a.u.

Fig. 6. (a) Slopes of descending scanning curves of different orders
— 1: primary, 3: tertiary, 5: quinquenary, 7: septenary, Network

2. (b) Slopes of ascending scanning curves of different orders —
2: secondary, 4: quaternary, 6: sexenary, 8: octonary, Network 1.

can be seen that the initial slopes of eitféror PD

200 300

RJ a.u.

100

Fig. 7. Ascertainment of Theorem 4 of th8DT. Loops AB are
traced between the same limits for both (a) Network 1 and (b)
Network 2.
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curves are zero, thus confirming the expectations of
Theorem 3a.

With respect to Theorem 3b, in the case of Network
1, it can be observed the slope of tB& curve is
always higher than the slopes of its lower ordré&
curves (see Figs. 5a and 6b). Theorem 3b is faithfully
fulfilled, thus once more reflecting the independent
liquid filling of pore cavities according to size in this
type of network.

In the case of Network 2 it can be observed in Fig. 5¢
that the slope of thBA curve is higher than the slopes
of its lower orderPA curves for most part of th&:
interval except at low values of this parameter. There
is a maximum slope fdPA curves at intermediate val-
ues of Re. This maximum occurs wheR. ~ 2R¢,
at which point the independent bond filling reassumes

153

after evaporation had been interrupted at the inversion
point. The smaller initial slope values (i.e. at &%)
are due to the filling of sites that are surrounded by
C — 1 already filled bonds. Once these sites are occu-
pied there is a discontinuity since the filling proceeds
gradually until reaching a percolation threshold when
R¢ =~ 2R¢{, after which the filling is continued again
but in a more tenuous way. The discontinuity above
mentioned occurs when a critical proportion of bonds
are filled with condensate, causing the sudden liquid
invasion of sites of sizes smaller th&p.

Thus, for Network 1 Theorems 3a and 3b are com-
pletely fulfilled in the case oPA curves; however this
is not true forPD curves. In this case, the evaporation
threshold appears when the blockage to the entrance
of the vapor phase, imposed by liquid-filled elements,

0.035

200 300
R/au.

100

200 300
RC/ a.u.

100

=
9.:_, a.l
3
0.000+
0 100 200 300
0.035
=
]
[y ‘ a2 :
0.000
0 100 200 300
0.035
=
&
s

1|

100 200 300

| b.2
0

100 200
RJ/au.

F(R)

Fig. 8. Ascertainment of Theorem 6 of th®DT. (a) Crossing ofPD and PA curves at poinP for Network 1. (b) Crossing oPD and PA
curves at poinP for Network 2 (a.1 and b.1). Complexion diagrams for B2 curves (a.2 and b.2). Complexion diagrams forRAecurves.
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is removed. Thus, before the evaporation threshold ap- cyclical procesBAB restores the system to the do-
pears, there is a plateau region of variable extension main complexion state that existed before of the start
depending on the location and order of the descending of the subsidiary loop.

curve. For either Network 1 or Network 2 Theorem 3b

is not but partially fulfilled over the whol&; range 3.3.1.5. Theorem 6. This theorem is appropriate for
(Fig. 5b and d). At larg& values the slope of a higher  Networks 1 and 2. Fig. 8a and b show the departures
order PD curve is steeper than the slope of BB of PA andPD curves after coinciding at some point
curve (see Fig. 6a), but the converse is true at Idwer  P; complexion diagrams are shown for each curve at
values. At highR¢’s, the free vapor path required for  the intersection point. The system acquires different
a pore to be emptied of condensate, is indeed harderdomain complexions depending on the route followed
guaranteed for the case of tB® curve than for any  to reachP, so that different approaches to this point
of thePD curves. This happens since desorption along result in different departing trajectories when the sys-
the BD curve at highR; values, i.e. at high relative  tem moves away fror®.

pressures, starts from a completely liquid-filled sys-

tem. This is not the case &C where the reversal  3.3.1.6. Theorem 7.Once again this theorem is
point corresponds to a partially liquid-filled structure. faithfully complied by Networks 1 and 2. The spi-
With respect to the extension of the plateau the per- ra| trajectories shown in Fig. 9a and b are graphical
colation threshold for vapor invasion [15] is given at proofs of the validity of this theorem in the case of
aRc value such thaB(R¢) = (C —2)/(C — 1), this is interacting pore domains.

approximately fulfilled by theBD curve.

3.3.1.3. Theorem 4. This theorem is fulfilled by both
Networks 1 and 2 in the sense that if the system is
at stateA (R; = Rcp), afterwards taken to stat@
(RcB), and whenR; is reversed toRca again, then

the system will return to statd. Fig. 7a and b show
the subsidiary loops obtained through this procedure.
However Theorem 4 is not fulfilled in the sense that
any oscillation ofR; between two given limitsRca

and Rcg, should lead to a loop of constant shape inde-
pendently of the position of statein the loop (com-
pare the two subsidiary loops in Fig. 7a and b). The
difference in shape between subsidiary loops may be
ascribed to the different domain complexions existing
at the differentA points at which the subsidiary loops
have begun: the intensities of cooperative phenomena
during adsorption and desorption and thus the shape of
a subsidiary loop depend on the state of the system at
point A.

3.3.1.4. Theorem 5. This theorem is completely ful-
filled for both Networks 1 and 2. Fig. 7a and b show
the evolution of a system for a secondary ascending
scanning curve and for a system that has undergone 100 200 300

first a loop from the same starting point that the sec- R /au

ondary curve and then reassumed its movement. It is ¢

from pointB that the two trajectories moves up to point  Fig. 9. Ascertainment of Theorem 7. Spiral trajectories for (a)
C, thus fulfilling the expectations of Theorem 5. The Network 1 and (b) Network 2.
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4. Conclusions No. 28416E (1998); (2) to FOMES (SEP, México)
Project “Medios Porosos y Superficies: Preparacion
On the one hand Theorems 1, 2, 3a, 3b and 4 of they Caracterizacion”, No. 98-35-21; and (3) to
ISDT are of a limited qualitative validity, for the case CONACYT-SECYT (Argentina): “Medios Complejos
of porous structures constituted by non-independent y Fisicogtimica de Superficies (2000)".
pore domains, depending on the porous topology of the
network: the lesser correlated the pore elements are,
the greater is the accordance with the predictions of the
ISDT. For the case of a network type | in the DSBM .
e . . . . [1] D.H. Everett, W.l. Whitton, Trans. Faraday Soc. 48 (1952)
classification, all theorems involving ascending curves 249,
are completely fulfilled. [2] D.H. Everett, F.W. Smith, Trans. Faraday Soc. 50 (1954) 187.
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